Vidya Bhawan, Balika Vidyapith

1akti Utthan Ashram, Lakhisarai - 811311 (Bihar)

Class: -X

 Topic: - Polynomial
 Subject: -Mathematics

 How to Find Remaining Zeroes

Q. If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find all zeroes. **Solution:** Let $p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ Since two zeroes are $2 + \sqrt{3}$ and $2 - \sqrt{3}$ of p(x)

 \therefore [x-(2 + $\sqrt{3}$)] and [x- (2 - $\sqrt{3}$)] are the factors of p(x)

=
$$[x-(2+\sqrt{3})] [x-(2-\sqrt{3})]$$

$$= (x-2-\sqrt{3})(x-2+\sqrt{3})$$

$$= (x-2)^2 - (\sqrt{3})^2$$

$$= x^2 - 4x + 4 - 3 = x^2 - 4x + 1$$

 $x^2 - 4x + 1$ is a factor of the given polynomial p(x)

Now, we divide the given polynomial by $x^2 - 4x + 1$.

$$\begin{array}{r} x^2 - 2x - 35 \\ x^2 - 4x + 1) x^4 - 6x^3 - 26x^2 + 138x - 35 \\ x^4 - 4x^3 + x^2 \\ - + - \\ - 2x^3 - 27x^2 + 138x - 35 \\ - 2x^3 + 8x^2 - 2x \\ + - + \\ - 35x^2 + 140x - 35 \\ - 35x^2 + 140x - 35 \\ + - + \\ - \\ 0 \end{array}$$

By Euclid's Division algorithm

So, $x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35) + 0$

 $p(x) = (x^2 - 4x + 1) (x^2 - 2x - 35)$ $= (x^2 - 4x + 1) (x^2 - 7x + 5x - 35)$

$$= (x^2 - 4x + 1) (x^2 - 7x + 5x - 55)$$

$$= (x^2 - 4x + 1) [x(x - 7) + 5 (x - 7)]$$

$$= (x^{2} - 4x + 1) (x - 7) (x + 5)$$

Hence, all zeroes of the given polynomial p(x) are $2 - \sqrt{3}$, $2 - \sqrt{3}$, 7 and -5. *Hnswer*

- 1. Obtain all the zeroes of $3x^4+6x^3-2x^2-10x-5$ if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
- 2. Find all the zeros of $(x^4 + x^3 23x^2 3x + 60)$, if it is given that two of its zeros are $\sqrt{3}$ and $\sqrt{3}$.
- 3. Find all the zeros of $(x^4 + 2x^3 13x^2 12x + 21)$, if it is given that two of its zeros are $2+\sqrt{3}$ and $2-\sqrt{3}$.

Q. If the zeroes of polynomial $p(x) = x^3 - 3x^2 + x + 1$ zeroes are a - b, a, a + b, find a and b. **Given p(x) = x³-3x² + x + 1 & zeroes** are a – b, a, a + b Then $\alpha = a \cdot b$, $\beta = a$ and $\gamma = a + b$. \therefore Sum of zeroes = $\alpha + \beta + \gamma = \frac{-B}{A}$ $\Rightarrow (a-b) + a + (a+b) = \frac{-(-3)}{1}$ \Rightarrow (a - b) + a + (a + b) = 3 \Rightarrow a-b + a + a + b = 3 3a = 3 ⇒ $\therefore a = \frac{3}{3} = 1 \dots (i)$ Product of zeroes = $\alpha\beta\gamma = \frac{-D}{\Delta}$ \Rightarrow (a - b) a (a + b) = $\frac{-1}{1}$ \Rightarrow (a - b) a (a + b) = -1 \Rightarrow (a² - b²)a = -1 \Rightarrow a³ - ab² = -1 ... (ii) Putting the value of a from equation (i) $(1)^{3}-(1)b^{2} = -1$ \Rightarrow 1 – b² = -1 $\Rightarrow -b^2 = -1 - 1$ \Rightarrow b² = 2 \therefore b = $\pm \sqrt{2}$ Hence, a = 1 and $b = \pm \sqrt{2}$. *Hence,* a = 1 and $b = \pm \sqrt{2}$.

- If the zeroes of the cubic polynomial x³ 6x² + 3x + 10 are of the form a, a + b and a + 2b for some real numbers a and b,
- 2) If (a b), a and (a + b) are zeros of the polynomial 2x³ 6x² + 5x 7, write the value of a and b.